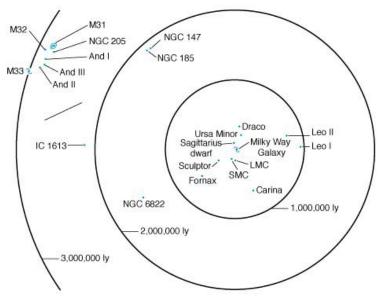
Einführung in die Astronomie II _{Teil 15}

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

13. August 2019


Overview part 15

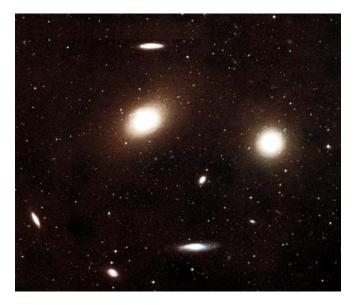
- clusters of galaxies
- formation and evolution
- gravitational lensing

Clusters and Superclusters !!

- galaxies not randomly scattered in space
- ► form *clusters* of galaxies
- clusters can be poor to rich
- poor clusters \rightarrow *groups*
- Example: the Local Group

Local Group

Local Group


- about 30 galaxies, including ours
- most are dwarf ellipticals
- we still find smaller galaxies as members of the local group

Clusters and Superclusters

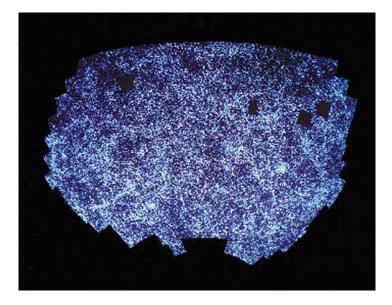
closest rich cluster: Virgo cluster

- about 2000 galaxies
- $\blacktriangleright~10^\circ \times 12^\circ$ area in the sky
- 15 Mpc distance
- 3 Mpc diameter
- center of Virgo cluster: 3 giant ellipticals
- one of those about the size of the local group ...


Virgo cluster (center)

Clusters and Superclusters

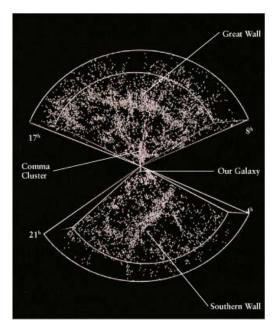
- clusters are also classified by their overall shape
- irregular cluster: scattered distribution (Virgo)
- regular cluster: nearly spherical distribution (local group)
- nearest regular rich cluster: Coma cluster
- shape of a cluster is related to dominant type of galaxies
- $\blacktriangleright\,$ rich regular clusters $\rightarrow\,$ mostly elliptical and S0
- $\blacktriangleright \text{ irregular} \rightarrow \text{even mix}$


Hercules cluster

Clusters and Superclusters !!

- galaxy clusters group in huge superclusters
- dozens of clusters in a 30 Mpc diameter region
- form complex lacy patterns in the sky!
- maps of millions of galaxies (1980's): out to 160 Mpc
- voids: regions with few galaxies
 - seem to be elongated or tube-shaped
 - 30 to 120 Mpc across
 - clusters of galaxies concentrate on the surfaces of voids
 - give clues about the early universe

supercluster !!

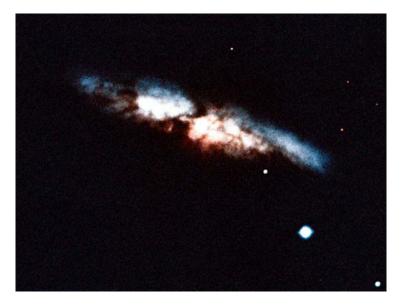


Clusters and Superclusters !!

maps also show large structures

- Great Wall: 80 by 230 Mpc region
- similar: Southern Wall: 100 Mpc region
- sizes of structures seem to be limited by available observations!

large scale structure !!


Collisions: Overview !!

- galaxies move around and collide!
- Milky Way will collide with M31 in a few billion years
- collision compresses gas and dust clouds as they collide with each other
- note: stars don't collide, too much space between them!
- clouds can be "stopped" by a collision and heated to high temperatures
- \blacktriangleright \rightarrow hot intracluster gas at $10^{7\dots8}\,{\rm K}$

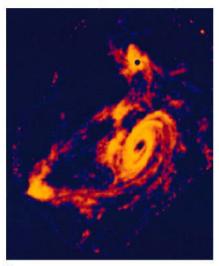
Collisions: Overview !!

- compressed gas clouds start a burst of star formation!
- ► → starburst galaxies
- bright centers with warm dust, very active star formation

Starburst galaxy

Collisions: Overview

- shows streams of H gas with loops and twists
- \blacktriangleright \rightarrow several close encounters!
- similar stream connects Milky Way to LMC
- tidal forces deform galaxies and can eject stars into intergalactic space
- stars can also slow down and galaxies can merge
- when the Galaxy collides with M31 a huge number of new stars will form, SNe will explode in large numbers
- \blacktriangleright \rightarrow sky will be more dramatic than today ...


Collisions: Overview

- galactic cannibalism: massive galaxies absorb smaller ones
- maybe the reason for giant ellipticals!
 close encounters between galaxies can also feedback
- close encounters between galaxies can also form spiral arms

Interacting galaxies

Interacting galaxies

b

Collisions: Overview

Interactions between galaxies are common:

- spacing in clusters pprox 100 times size
- more early type galaxies in the center of clusters
- more pronounced for denser clusters
- interactions increase velocity dispersions
 - ightarrow destroy disk structures and create $r^{1/4}$ profiles
- \blacktriangleright \geq 50% of H I disks are warped
- \blacktriangleright \geq 50% of E's show concentric rings of stars
- \blacktriangleright intergalactic hot gas in rich clusters with mass \approx mass of stars in cluster

- chance of star-star collisions extremely low
- \blacktriangleright \rightarrow interaction is gravitational
- simple model:

mass *M* (globular cluster, small galaxy) moves through a "sea" of stars, gas, clouds & dark matter of constant density ρ (the "target galaxy")

- ▶ → it will move in (nearly) a straight line if $M \gg m$ (*m*: typical mass of an object in the target)
- ▶ if *M* moves *slowly* through the target:
- M pulls material closer to it while moving through the target

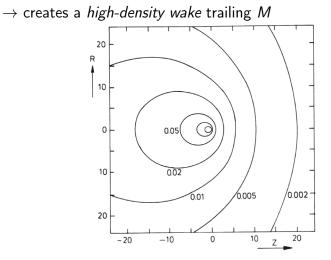


Figure 24.5 The fractional enhancement in the density of stars caused by the motion of a mass M in the positive z-direction. (Figure from Mulder, Astron. Astrophys., 117, 9, 1983.)

- the wake creates a gravitational force on M slowing in down
- \blacktriangleright \rightarrow dynamical friction
- dependencies of dynamical friction force f_d:
 - 1. proportional to ρ
 - 2. proportional to M^2 :
 - 2.1 M creates the wake by pulling material in
 - 2.2 *M* interacts with wake itself

- inversely proportional to v_M^2 :
 - 1. v_M increases $\rightarrow M$ has less time to affect any object in the target
 - 2. v_M increases $\rightarrow M$ is farther away when wake forms

Rapid encounters !!

- \triangleright v_M so large that stars of target cannot react
- \blacktriangleright \rightarrow dynamical friction unimportant
- impulse approximation
- positions of stars do not change
 potential energy U of galaxies does not change
- velocities of stars do change "randomly"
- $\blacktriangleright \rightarrow$ kinetic energy of the relative motions of the 2 galaxies is transferred into internal kinetic energy

Rapid encounters !!

Suppose one galaxy gains internal kinetic energy
 before collision: virial equilibrium (*i* for "initial")

$$2K_i = -U_i = -2E_i$$

during encounter:

$$K_i \rightarrow K_i + \Delta K$$

• total energy has increased (U = const.)

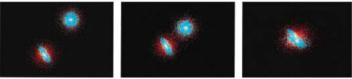
$$E_f = E_i + \Delta K$$

 \blacktriangleright \rightarrow galaxy no longer in virial equilibrium

after virial equilibrium is reestablished (few orbital periods):

$$K_f = -E_f = -(E_i + \Delta K) = K_i - \Delta K$$

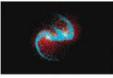
▶ internal kinetic energy is *reduced* after encounter
 ▶ → increased U

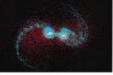

- galaxy can do this by expansion or evaporation
- evaporation could be in the form of *streams* of stars and gas
- cools the galaxy and reestablishes virial equilibrium
- combination of both can occur (more likely in head-on collisions)

Mergers

- pair of galaxies that is gravitationally bound
- \blacktriangleright \rightarrow lose orbital energy during encounters
- \blacktriangleright \rightarrow will *merge* after enough encounters
- ► tidal forces will also remove orbital kinetic energy → leads to streams of stars and gas (Magellanic Stream??)
- \blacktriangleright \rightarrow tidal stripping
- $\blacktriangleright\,$ Magellanic Clouds will merge with the Galaxy in $\approx\,10\,{\rm Gyrs}$
- every giant galaxy will "devour" a few satellites
- gravitational torques \rightarrow counter-rotating cores (some E's)

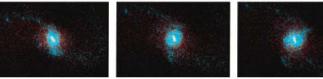
- actual encounter or merger is complex
- followed by numerical simulation, N-body codes
- produce many observed features (*tidal-tail galaxies*)
- close slow encounters deliver bridges and tails


Merger


t = 0

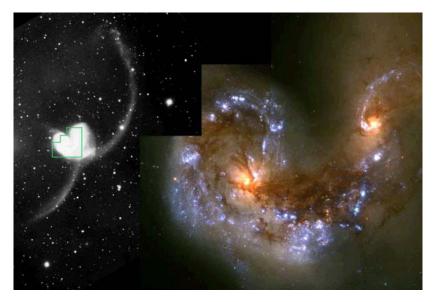
t = 125 million years


t = 250 million years


t = 375 million years

t = 500 million years

t = 625 million years



t = 750 million years

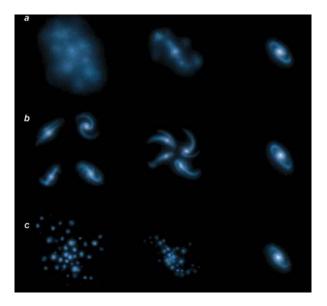
t = 875 million years

Interacting galaxies

- \blacktriangleright "best" effect if orbital angular speed \approx angular speed of some disk stars
- tidal bulges develop on both sides
- dark matter halo decreases time scale for merger
- ► if satellite moves with an inclination to the disk → disk warps
- warp can survive for up to 5 Gyr
- \blacktriangleright > 50% of galactic disks are warped

- interaction causes gas compression and cloud collisions
- star forming regions develop
- interacting galaxies bluer than field galaxies
- starburst galaxies: 98% of L in the IR, extremely bright in IR
- not all of them are interacting galaxies

- interactions very important for E's:
- cD's are found only in the company of other galaxies
- ► > 50% have multiple nuclei
- have lots of GC's
- \blacktriangleright > 50% of E's have concentric shells of stars


Formation of Galaxies

- same problems as with stars: too slow to observe directly
- look at distant galaxies: they are also younger!
- galaxies were bluer in the past than today
- \blacktriangleright \rightarrow vigorous star formation
- appears to take place in bursts
- HST images show many more spirals among younger galaxies
- ▶ today: 5%, early on: 30%

Formation of Galaxies

- many of those young spirals show signs of collisions/mergers
- collisions seem to be responsible for their demise by removing gas due to star formation bursts
- ellipticals were already developed 4 billion years ago!
- appear to have formed in burst of star formation 10-15 billion years ago

Formation of Galaxies

Formation of Galaxies !!

- how do galaxies form?
- 1960's: contraction of huge clouds of gas
- ▶ 1970's: merging of several clouds
- or many really small clouds
- merging of gas clouds seems to be the correct idea
- HST images of 11 billion year old galaxy like objects with irregular shapes
- seem to be the merging clouds that make galaxies
- still unresolved question!

- Eggen–Lynden-Bell–Sandage or top-down model:
- rapid collapse of pre-galactic nebula
- oldest halo stars formed early on while on nearly spherical orbits
- explains why halo stars are metal-poor
- $\blacktriangleright\,$ first generation of stars $\rightarrow\,$ SNe $\rightarrow\,$ slow enrichment of metals in the ISM
- rapid collapse slowed when collisions became more frequent
 - \rightarrow galaxy heats up
- \blacktriangleright angular momentum conserved \rightarrow flattening
- \blacktriangleright \rightarrow disk develops

time scale estimate:

$$t_{\rm ff} = \left(\frac{3\pi}{32}\frac{1}{G\rho_0}\right)^{1/2} \approx 6.8\times 10^8\,{\rm yr}$$

- oldest bulge stars formed during initial density increase in the central regions
- bulge stars with large Z formed subsequently

- problems:
 - 1. halo objects should orbit mostly in the same direction as the disk

but net rotation of halo essentially zero!

- 2. age spread of GCs $\approx 3\,\text{Gyr}$
 - \rightarrow collapse nearly a factor of 5 slower than estimated
- 3. multi-component disk??
- systematic composition variation in GCs: GCs close to disk are more metal-rich than GCs farther out

 model of galaxy evolution should explain *chemical* evolution of the galaxy
 → model the stellar birthrate B(M, t) by

 $B(M, t) dM dt = \psi(t) \xi(M) dM dt$

- ► B(M, t) stars of mass [M, M + dM] born per unit volume at time [t, t + dt]
- $\psi(t)$ star-formation rate (SFR) at t
- $\xi(M)$ initial mass function (IMF)

► IMF fit by power-law

$$\xi(M) = CM^{-(1+x)}$$

- Salpeter (1955): $x \approx 1.35$ (*Salpeter law*)
- $\blacktriangleright\,$ modern: $x\approx 0.8$ for $M>1.6\,{\rm M}_\odot$ and more complex below $1.6\,{\rm M}_\odot$

- closed box model: starting with Z = 0 and no influx
- produces too many stars with low metallicity 1/2 of stars in solar neighborhood should have Z < 1/4
- ▶ observed: only 2% of the F+G stars have low Z → G-star problem
- several mechanisms to help: disk started with Z > 0 or continuous infall of metal-poor material onto metal-rich disk or IMF change over time
- slow collapse: if cooling time is > t_{ff} (optically thick collapse)

$t_{ m cool} > t_{ m ff}$

- nebula cannot radiate energy away as fast as it is delivered by the collapse
- temperature rises
 - ightarrow pressure rises
 - \rightarrow collapse halts
- for T ≈ 10⁶ K and n ≈ 0.05 cm⁻³
 → mass of M ≈ 10¹² M_☉ is an upper limit for a collapsing cloud
- $\blacktriangleright\,$ for $\,T\approx 10^4\,{\rm K}$ the limit changes to $10^8\,{\rm M}_\odot$
- \blacktriangleright galaxies should form in this mass range \rightarrow compares OK to observations

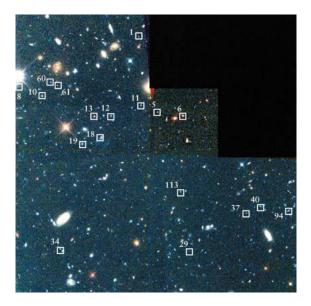
$t_{ m cool} > t_{ m ff}$

- *however*: during the collapse, other energy sources become available
- first generation SNe send shock waves through the galaxy at 0.1 c
- $\blacktriangleright\,$ shocks heat the gas to $\sim 10^6\,{\rm K}$ and dissipate energy $\rightarrow\,$ collapse could slow a little
- doesn't work well enough to explain the age & metallicity problems

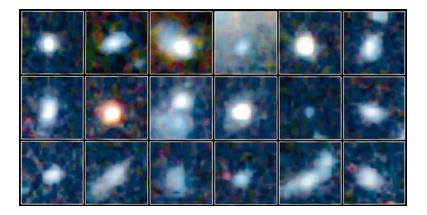
- density fluctuations in the early universe
- $\blacktriangleright\,$ "blobs" with $M\approx 10^6\dots 10^8\,M_\odot$ much more frequent than with $10^{12}\,M_\odot$
- fragments initially evolved isolated
- formed stars, and maybe GCs in their centers
- \blacktriangleright \rightarrow individual chemical evolution and history
- fragments gravitation pulled them together
- formed a spheroid of micro-galaxies
- merging of fragments begins

- \blacktriangleright near center of spheroid \rightarrow density larger
 - \rightarrow more rapid evolution
 - \rightarrow old stars form and chemical enrichment is faster
 - \rightarrow old, metal-rich bulge!
- outer regions evolve slower (lower density)
- collisions disrupts majority of fragments
 → GCs at the cores of some of the fragments are "liberated"
- ▶ collisions raise T_{virial}
 → delays collapse by 2...3 Gyr

- disrupted systems lead to halo field stars and GCs
- can produce retrograde halo objects from retrograde fragments
- outer fragments evolves like individual dwarf galaxies for a while according to the top-down model
- only about 10% of the original GCs would survive
- Iow mass GCs disrupted (lower binding energy)
- high mass GCs spiraled in quickly (dynamic friction)

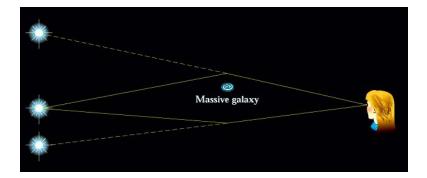

- gas clouds collide and dissipated energy
- ► some initial global angular momentum → disk of gas forms
- halo stars are not affected by the gas!

- computer simulation results:
- $\blacktriangleright\,$ thick disk forms with $\,T\approx 10^{6}\,{\rm K}$
- ▶ denser material cools faster (t_{cool} ∝ 1/n)
 → once T < 10⁴ K, H recombines, H I clouds form
 → star formation begins
- \blacktriangleright early SNe II keep much of the gas at 10⁶ K
- SNe increase [Fe/H] from -1.5 to -0.5
- \blacktriangleright molecular gas settles closer to the mid-plane \rightarrow thin disk


- $\blacktriangleright\,$ after about 400 Myr $\rightarrow\,$ star formation in thick disk stops
- $\blacktriangleright\,$ for $\approx 5\,{\rm Gyr}$ star formation continues in thick disk
 - \rightarrow consumes about 80% of the gas
- today star formation continues mostly in the young thin disk
- young stars in the bulge from recent mergers with gas rich small satellites

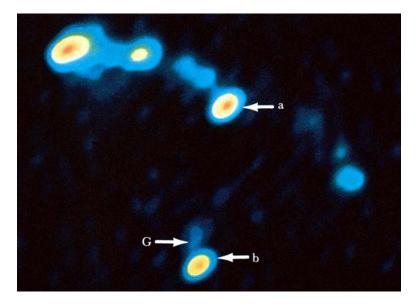
- SFR time dependent and depends on Hubble type
- ellipticals can be made by mergers of spirals
- \blacktriangleright observations of distant galaxies \rightarrow allows observation of earlier stages in galactic evolution
- indicates that spirals were more frequent!
- more small, blue galaxies!

galaxy Legos


galaxy Legos

gravitational lensing !!

- bending of light by masses
- can produce multiple images of a distant object if a large mass is close to the line of sight
- a number of them has been discovered


gravitational lensing !!

gravitational lensing

- example: 2 images of a distant quasar produced by a galaxy appearing in the middle of the two
- HST images show blue arcs within clusters
- \blacktriangleright \rightarrow distorted images of a galaxy behind the cluster!
- use this to determine that 90% of the cluster mass is concentrated on its galaxies
- $\blacktriangleright \rightarrow$ dark matter appears to be within and close to galaxies

gravitational lensing

gravitational lensing !!

